

Overview of bio-based plastics Dr. Love-Ese Chile December 04, 2019

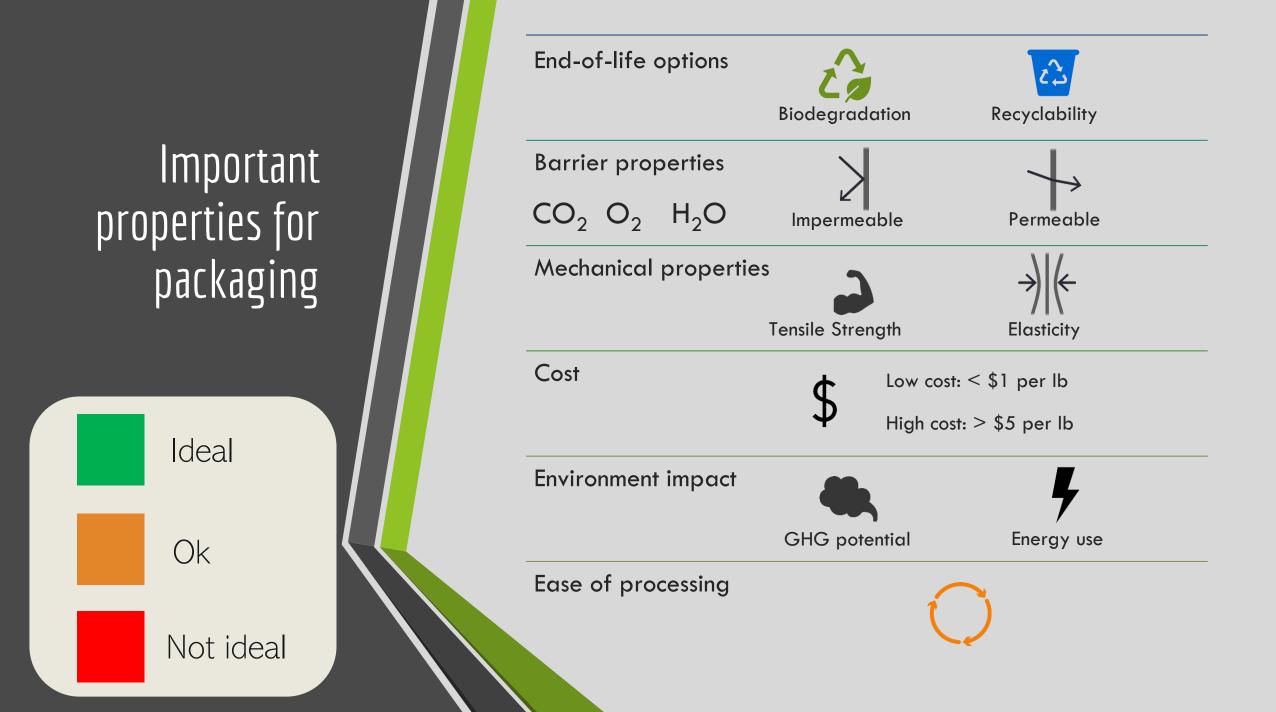
Alternatives to single-use

- Avoiding disposable items
- Re-usables are always the more sustainable option

"Bio-based" vs. "Biodegradable"

'Bio-based' = origin of the plastic
'Biodegradable' = breakdown of the plastic

A plastic being fossil- or bio-based, does not determine if it's biodegradable

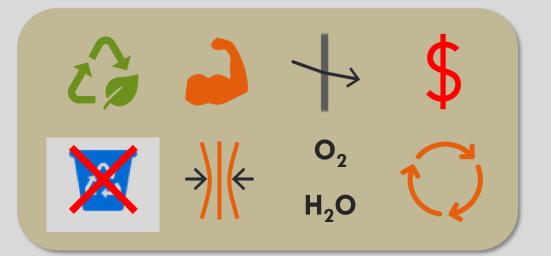


No North American certification standards for bio-based products

ORIGIN

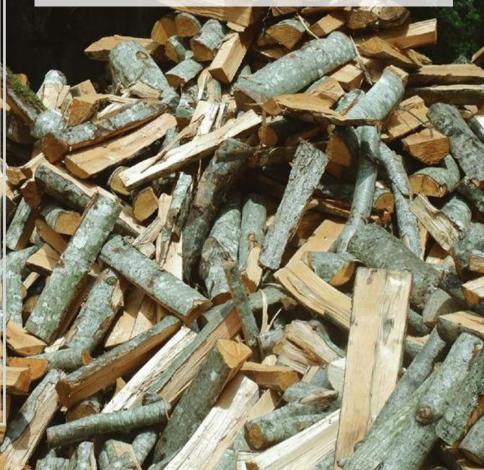
Bio-based	Bio-based	
Drop-in alternatives Recyclable	Natural plastics or Semi-synthetic plastics Biodegradable	
кесусіаріе		
Landfilled	Biodegradable	
Fossil-based conventional plastics	Fossil-based compostable plastics	
Fossil-based	Fossil-based	

DISPOSAL



Natural polymers

Found in nature


Cellulose and its' esters

- Paper packaging
- Cellulose is the most widely spread natural polymer and is derived by a delignification from wood pulp or cotton linters.
- Cellulose esters can be processed by injection molding or extrusion

Used mostly in rigid containers or cellulose esters in films

- Paper straw
- Bowls, clamshells, boxes, trays, plates
 - Sealable films for packaging vegetables, bakery, cheese

Used mostly for more flexible films

• Trash bags, shopping bags

Thermoplastic starch (TPS), starch blends and plant-fibre blends

- Starch extracted from potatoes, wheat, corn and rice
- High water content or plasticizers needed to produce a plastic-like film
- Moisture-sensitive and brittle

Natural plastics

Zein = corn protein: Brittle, edible

Chitosan = made from chitin (shellfish): Water sensitive, potential allergen

Alginate

Made from brown algae

Specific species farmed in ponds

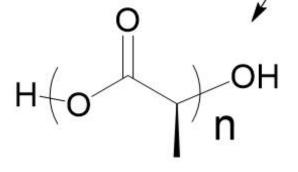
Moisture sensitive and brittle

Semi-synthetic polymers

Created through biosynthesis

Fermentation of sugars produces different monomers, which are converted to polymers

PLA = Poly(lactic acid)


- Most well known compostable plastic
- Promising substitute for PE, PS and PET
- Can be shaped using injection molding, extrusion, blow molding & thermoforming
- Can be transparent

 CO_2 H₂O

Used mostly in rigid containers for more durable packaging

- Salad bowl, deli container, clamshell, cup, sushi tray, herb tray, berry box
 - Lining in cups for hot drinks
 - Rigid film for thermoforming, flexible film for packaging
 - Compostable utensils (high heat)

poly(lactide)

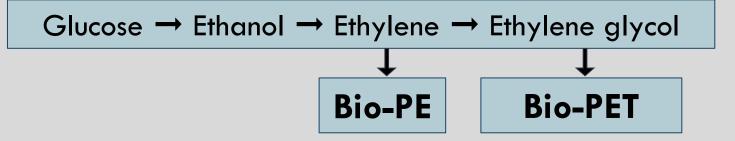
Used mostly in flexible packaging

Bags for snacks

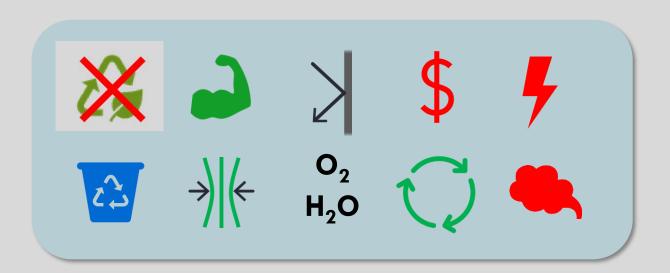
Many new applications with emerging scaled production

- Thermoplastic bacterial polyesters
- Polymer is produced in the microbial cells through fermentation then harvested
- Waste streams such as used frying oil, discarded food, agricultural wastes, domestic wastewater, glycerol from biodiesel production and landfill gas have been used as free or low-cost fermentation substrates to produce PHA's
- Over 100 different varieties have been developed

Polyhydroxyalkanoates = **PHA's**


27 \rightarrow \leftarrow O_2

Used in same applications as fossil-based products


- Beverage, condiment bottles
- Film, bottles, coated paper, zipper bags

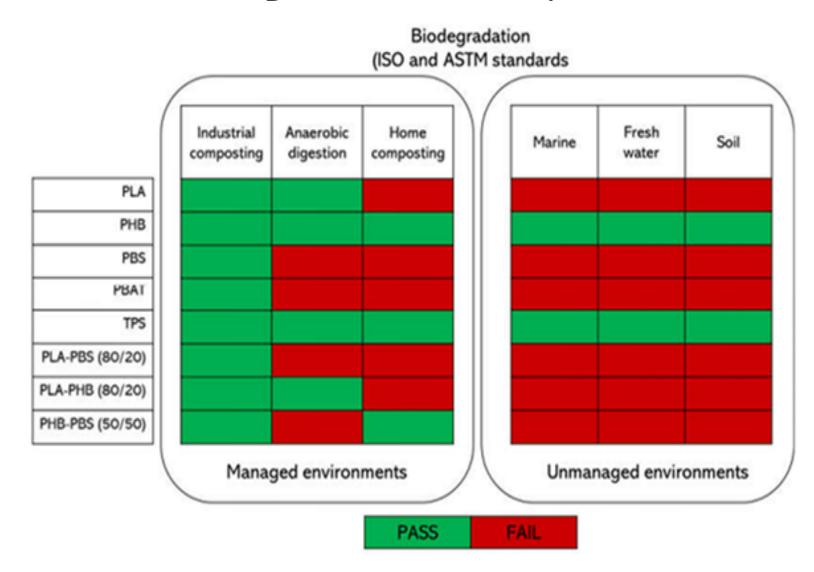
Bio-based "drop-in" plastics

 Same chemical and physical properties as fossil-based plastic

Fossil-based, compostable plastics

PBS = polybutylene succinate
Fossil based w/ high strength

PBAT = polybutylene adipate terephthalate Industrially compostable w/ high strength


 \rightarrow \leftarrow O_2 X

FEEDSTOCK

Bio-based	Bio-based	
bio-PE, bio-PET PLA	Cellulose, chitosan, corn zein, algae, plant- fiber blends, starch blends PLA, TPS, PHAs, bio-PBS	
Recyclable	Biodegradable	
Landfilled	Biodegradable	
Conventional plastics	PBAT, PBS	
Fossil-based	Fossil-based	

END-OF-LIFE

Biodegradation Comparisons

"Biodegradable" vs. "Oxo-degradable" vs. "Compostable"

'A material **degraded by the action of microorganisms** and ultimately converted to water, carbon dioxide and/or methane and new bacterial biomass.

Conventional plastics such as polyethylene (PE) which include an **additive designed to help them** break down and **fragment**

Certified compostable products, breakdown under specific conditions in specific time frames.

Standardized tests vs. Certifications

Standardized test method - general measure of compost biodegradation, designed to yield **reproducible and repeatable test results**

-~	
-~	
-~	

Certifications verify that products and packaging have been independently tested according to scientifically based standards

There are **many standardized tests** in this space, but in North America **only industrial composting certifications** are available.

BP

COMPOSTABLE

Biodegradable | US COMPOSTING Products Institute | US COUNCIL

COMMERCIALLY

CERT #0000000

R

OST

0

ZO

COMPOSTABLE ONLY.

FACILITIES MAY NOT

EXIST IN YOUR AREA.

COMPOSTABLE

Geprüft

NDUSTRIAL

Industrial Compost Certifications

COMPOSTABLE www.compostable.info

Only available to food service items, food packaging and yard waste products

COMPOSTABLE

Biodegradable | US COMPOSTING Products Institute | US COUNCIL

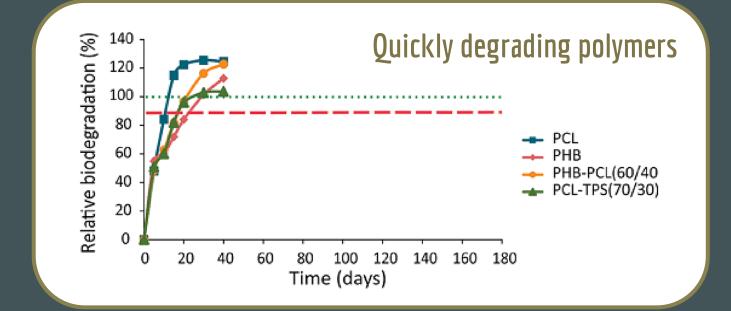
COMPOSTABLE

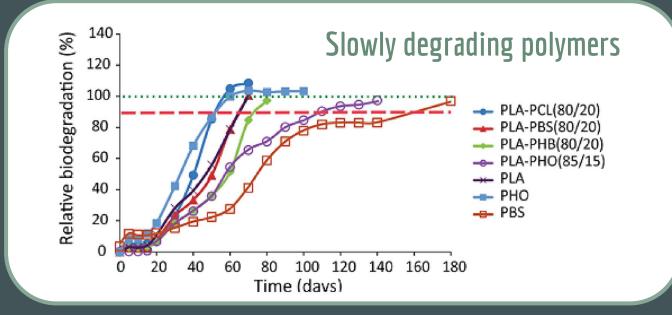
Geprüft

NDUSTRIAL

- 90% disintegration within 12 weeks
- 90% conversion to CO₂ within 26 weeks
- Heavy metal and PFA analysis
- **Plant germination** toxicity
- Soil invertebrate toxicity

Industrial Compost Certifications

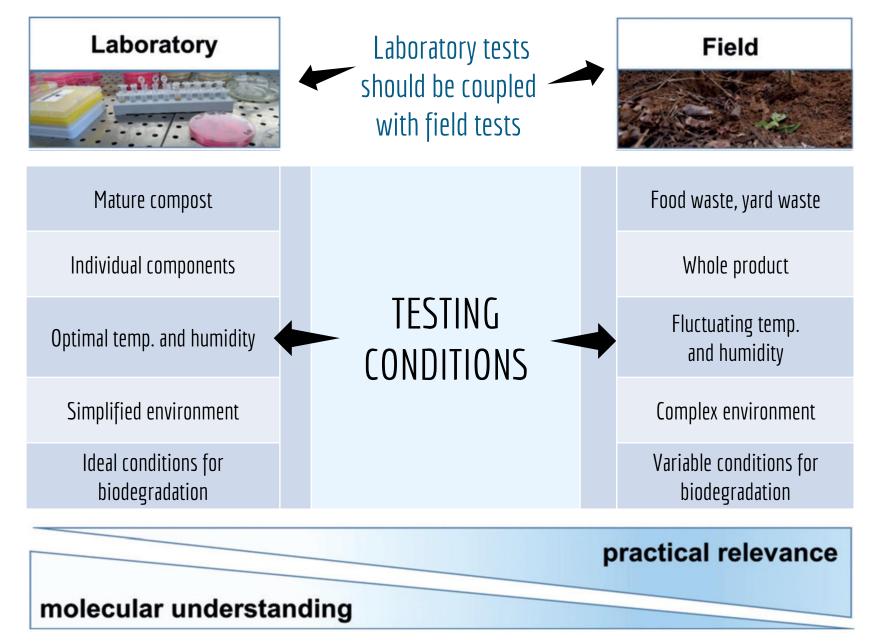

COMPOSTABLE www.compostable.info


However, industrial composting plant have:

- an active phase for 3-6 weeks
- post-composting stabilization for 8-12 weeks

Pass/Fail Certifications*

*No indication of how fast products will break down



Narancic, T.; Verstichel, S.; Reddy Chaganti, S.; Morales-Gamez, L.; Kenny, S. T.; De Wilde, B.; Babu Padamati, R.; O'Connor, K. E., Biodegradable Plastic Blends Create New Possibilities for Endof-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environmental Science & Technology **2018**, 52 (18), 10441-10452

How viable are laboratory tests?

Haider, T.; Völker, C.; Kramm, J.; Landfester, K.; Wurm,
F. R., Plastics of the future? The impact of
biodegradable polymers on the environment and on
society. Angewandte Chemie International Edition 2019,
(58), 50-62.

Field test performance

Compost Manufacturing Alliance:

Testing to determine the breakdown of products using modern, large-scale compost manufacturing technologies

Adding compostable food service packaging (FSP):

- No effect on the biochemistry or nutrient value of finished compost
- Acts as a bulking agent similar to wood
- Active composting often extended beyond typical operational time-frames; stringent pile management implemented

Table 3. Main characteristics of some biodegradable materials.

Material	C/N ratio	Moisture content (%)	Structure
Optimum value	20 – 30	45 – 55	Loose for air access
Grass	12 – 20	80 – 90	Poor
Food, vegetable waste	12 – 25	70 – 90	Poor
Leaves	30 – 60	40 – 50	Average
Tree and bush clip-	100 – 150	Moist to dry	Good
pings			
Paper/paperboard	200 – 400	5 – 20	Average
Biopolymers	> 100	0 – 20	Average

Compost Manufacturing Alliance <u>https://compostmanufacturingalliance.com/</u>

Foodservice Packaging Institute and Biodegradable Products Institute, "Field Study: Foodservice Packaging as Compost Facility Feedstock." 2018

FULSEA

Questions? Queries? Quandaries?

Dr. Love-Ese Chile GreyToGreenSolutions.com LoveEseChile.com

If the future can be positive, why choose differently?

- Michael Braungart, Cradle to Cradle Design